Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models
نویسندگان
چکیده
منابع مشابه
Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models
Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would ...
متن کاملOn the Sufficiency of Pairwise Interactions in Maximum Entropy Models of Networks
Biological information processing networks consist of many components, which are coupled by an even larger number of complex multivariate interactions. However, analyses of data sets from fields as diverse as neuroscience, molecular biology, and behavior have reported that observed statistics of states of some biological networks can be approximated well by maximum entropy models with only pair...
متن کاملOn the sufficiency of pairwise interactions in maximum entropy models of biological networks
Biological information processing networks consist of many components, which are coupled by an even larger number of complex multivariate interactions. However, analyses of data sets from fields as diverse as neuroscience, molecular biology, and behavior have reported that observed statistics of states of some biological networks can be approximated well by maximum entropy models with only pair...
متن کاملA Maximum Entropy Approach to Pairwise Data Clustering
Partitioning a set of data points which are characterized by their mutual dissimilarities instead of an explicit coordinate representation is a difficult, NP-hard combinatorial optimization problem. We formulate this optimization problem of a pairwise clustering cost function in the maximum entropy framework using a variational principle to derive corresponding data partitionings in a d-dimensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2017
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1005762